
1 Numerical stability analysis of Min oscillation
patterns

This section describes how the stability of Min oscillation patterns in rectangular-
shaped 3D cell geometries is determined numerically.
We analyse the stability with respect to spatial variations in the MinD at-
tachment rate. For the sake of simplicity such variations will be restricted
to linear profiles of the attachment rate kD,

kD(x, y, z) = k̄D

(
1 + 2s

x cos a+ y sin a

|lx cos a+ ly sin a|

)
. (1)

Here lx and ly denote cell length and width (|x| < lx/2, |y| < ly/2), k̄D the
mean attachment rate, s characterizes the slope of the profile (0 ≤ s ≤ 1)
and a denotes the direction of rate variation with respect to the x-axis
(0 ≤ a ≤ π/2).

In order to investigate how the stability of oscillation patterns depends
on cell size, geometry and the MinD recruitment rate kdD, we define 18
different rectangular-shaped cell bodies with varying length and width, but
identical height 2r. The cell lengths were increased from 4µm to 10µm,
the cell width from 3µm to 5µm, both in steps of 1µm. For each of these
geometries, we perform the following procedure independently for all MinD
recruitment rates kdD ∈ {0.03, 0.035, . . . 0.1µm3/s}:

1. The system is prepared in a transversal oscillation pattern in y-direction
by solving the nonlinear equations (c.f. Materials and Methods) nu-
merically for 200s with an attachment rate variation in y-direction
using parameters s = 1, a = π/2 in Equ. (1).

2. Subsequently the spatial variation of kD is removed by setting s = 0
and the pattern is observed for a simulation time of 2000s with spatially
homogeneous attachment rate.

We then determine if the pattern remains stable during this period
by comparing the evolution of the concentration uDD at two points
p1 and p2 in the cell interior which are located axisymmetrically with
respect to the y-axis. We here choose p1 = [0.95(−lx/2 + r), 0, r/2]
and p2 = [0.95(lx/2− r), 0, r/2].
If the pattern is stable, uDD(p1, t) and uDD(p2, t) will, apart from
small numerical errors, not deviate from each other. However, if the
pattern exists only transiently and switches into a longitudinal oscil-
lation, the concentration in p1 and p2 will loose its symmetry and the
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signals will deviate.
We therefore apply the following criterion for stability:

max
t∈{0,100s,...,2000s},i∈{1,2}

{
|uDD(p1, t)− uDD(p2, t)|

uDD(pi, t)

}
{
≥ α⇒ pattern not stable

< α⇒ pattern stable

(2)

Eq. 2 states that a pattern is only considered stable if the maximum
relative deviation of the concentration uDD between p1 and p2 over
the solution interval does not exceed a threshold α. By inspection we
find that α = 0.05 is a reasonable choice.
An example for the application of Eq. (2) is shown in Fig. 1.

3. In the case that a stable pattern is found in the previous step, we use its
final system state as initial configuration for independent simulations
in which the stability is tested against perturbations given by spatial
attachment rate variations with different slopes s and directions a (cf.
Eq. (1)).

Specifically, for each combination

(s, a) ∈ {0.2, 0.4, . . . 1.0} × {0, pi/18, . . . , pi/2− pi/18}

we compute the solution for an interval of 2000s and determine the
type of the final pattern. We here distinguish between three different
pattern types: transversal pole-to-pole oscillation, longitudinal pole-
to-pole oscillation and longitudinal stripe-shaped oscillations. The fol-
lowing recipe describes how this evaluation is automated:

• The three pattern types are distinguishable by their different spa-
tial symmetries. We therefore measure and compare the values
of all concentrations u ∈ {uDD, uDT , uE} on 6 different straight
lines located in the cell interior (cf. Fig. 2) :

γ1 = {(x, y, r/2) : x = −0.95(lx/2− r) ∧|y| ≤ 0.95(ly/2− r)},
γ2 = {(x, y, r/2) : x = 0 ∧|y| ≤ 0.95(ly/2− r)},
γ3 = {(x, y, r/2) : x = 0.95(lx/2− r) ∧|y| ≤ 0.95(ly/2− r)},
η1 = {(x, y, r/2) : |x| ≤ 0.95(lx/2− r) ∧y = −0.95(ly/2− r)},
η2 = {(x, y, r/2) : |x| ≤ 0.95(lx/2− r) ∧y = 0.95(ly/2− r)}.

(3)
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• Using the notation 〈u〉γ ≡ |γ|−1
∫
γ uds, we define the following

three measures for the symmetry of the pattern, again for all
u ∈ {uDD, uDT , uE}:

pL(u) =
|〈u〉γ1 − 〈u〉γ3 |
〈u〉γ1uγ3

.

pT (u) =
|〈u〉η1 − 〈u〉η2 |
〈u〉η1uη2

,

pS(u) =
|〈u〉γ1uγ3 − 〈u〉γ2 |
〈u〉γ1uγ2uγ3

.

(4)

The line integrals in 〈u〉γ are here approximated by the value of u
at three points, the two endpoints and the midpoint of the line γ.
The concentrations are evaluated at the last time step, t = 2000s.

In case of a longitudinal pole-to-pole oscillation, the signals at
γ1 and γ3 oscillate in opposition, resulting in a large pL. Simi-
larly, transversal pole-to-pole oscillations yield large values of pT .
Finally, in case of a longitudinal stripe pattern (with two nodes
of oscillation) the concentrations at γ1 and γ3 are in phase with
each other and in opposition with the signal at γ2. Therefore
large values of pS characterize longitudinal stripe oscillations.

• Taken these considerations together, we conclude that the type of
the oscillation pattern can be determined reliably by the following
rule:

if p(u) = max{pL(u), pT (u), pS(u)} =
pL(u) ⇒ long. pole-to-pole

pT (u) ⇒ trans. pole-to-pole

pS(u) ⇒ long. stripe.

(5)

To obtain a single, final result for the pattern type we take the
vote over the independent evaluations for u ∈ {uDD, uDT , uE}.
The unspecified case that the three concentrations yield all three
different pattern types did not occur.

For fixed cell geometry, this procedure firstly provides us with a threshold
for the MinD recruitment rate k∗dD above which the initiated transversal
oscillation persists in step 2. Secondly, for each kdD > k∗dD one obtains
thresholds in direction and slope of the perturbation above which the pattern
switches.
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Figure 1: Example for a transversal oscillation pattern that is found un-
stable using Eq. (2). The concentrations uDD(p1, t) and uDD(p2, t) deviate
considerably at t ≈ 1600s, since the pattern changes into a longitudinal oscil-
lation (a). The relative deviation therefore exceeds the threshold α and the
pattern is found unstable (b). Parameters: lx = 8, ly = 3, kdD = 0.07µm3/s
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Figure 2: Illustration of the straight lines along which uDD is evaluated in
order to determine the type of the final oscillation pattern. The contour
indicated in black is the shape of a cell with parameters lx = 7 and ly = 4 in
topview. The straight lines γi and ηi for pattern determination are indicated
in red and green, respectively. The position of the lines in z-direction is
z = r/2.

Interchanging the role of cell length and cell width enables us analyse
the stability of longitudinal oscillations analogously to steps 1 to 3. Since
all non-perturbed longitudinal oscillations are found stable in step 2 for the

4



considered range of kdD, no critical recruitments rates are determined in
this case.

The numerical solution of the model equations (c.f. Materials and Meth-
ods) was computed using Comsol Multiphysics 4.4. To reduce the number
of necessary simulations for the parametric sweep in step 3, we utilised the
observation that the stability of a pattern decreases with the slope of the
perturbation and (partly) skipped parameter sets where the stability or de-
stability could be inferred from previous runs.

2 Characterization of Min oscillation patterns

The goal of this study is to investigate how the occurrence of specific types
of oscillation patterns depends on cell geometry and MinD recruitment rate
kdD. As opposed to the previous section, the Min system is not prepared in
a specific solution. Instead, the initial condition is a spatially homogeneous
configuration.

We again impose a linear variation of the attachment rate kD with dif-
ferent slopes and directions according to Eq. (1). The solution is calculated
for 0 ≤ t ≤ 4000s. We subsequently determine the final pattern that the
Min system settles into with the procedure explained in step 3 of section 1,
in which we evaluate the concentrations at the last time step t = 4000s.

This analysis is performed independently for the cell geometries and
MinD recruitment rates reporded in Fig. 4 of the main text, and for param-
eters a ∈ {0, π/10, . . . , π/2} and s = 0.2 in the attachment rate profile.

With width specified:
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Parameter Value Description

DD 16µm2s−1 Cytosolic Diffusion coefficient MinD

DE 10µm2s−1 Cytosolic Diffusion coefficient MinE

Dm 0.013µm2s−1 Membrane Diffusion coefficient MinDE

λ 6s−1 Cytosolic nucleotide exchange rate

kde 0.5s−1 MinDE Detachment rate

kD 0.1µms−1 MinD attachment rate constant

kdD 0.1µm3s−1 MinD recruitment rate constant

kdE 0.435µm3s−1 MinE recruitment rate constant

CD 602/µm3 total MinD density

CE 301/µm3 total MinE density

Table 1: Parameter values used in numerical simulations
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